Physics Extra sheet

Exercise 1:

A person (P) is at rest between two walls M1; and M2, parallel, 400 m apart.
(P), located at a distance d1 from M1 and at a distance d 2 from M2, emits a sound and he hears two sounds with a 0.6 s time difference.
The speed of sound in air is given as $340 \mathrm{~m} / \mathrm{s}$.
Determine the values of two distances d1 and d2.

Exercise 2 : Sound reflection.

A person (P) is at rest between two walls M1 and M2. parallel, distant d $=236 \mathrm{~m}$. (P), located at a distance d2 = 160m from M2 and at a distance d1 from M1, emits a sound and it hears two sounds with a time difference of 0.5 s . The speed of sound in air is given as: $V=331(\sqrt{1+(T / 273)})$
1-Show that the value of the speed of sound between the two walls is $336 \mathrm{~m} / \mathrm{s}$.
2- Calculate the temperature T of the air between the two walls.

Exercise 3: emission and reception of sound
A and B two people, (A) is at rest and (B) is moving away from (A) with a car at constant speed V in a rectilinear trajectory containing (A),
(B) emits a sound of big amplitude. When the distance between (A) and (B) becomes 200 m , the sound emitted by (B) arrives at (A). The duration between the sound emission by (B) and its reception by (A) is 0.54 s . The speed of sound in air is given as $340 \mathrm{~m} / \mathrm{s}$.
Determine the speed V of the car.

Exercise 4 : Sound reflection

A person (P 1) emits a high amplitude sound, another person (P2) at a distance $d=1000 \mathrm{~m}$ from (P1), hears the sound and its echo with a time difference of 0.4 s The figure opposite represents the two paths followed by the sound between (P1) AND (P2). The speed of sound in air is given as $340 \mathrm{~m} / \mathrm{s}$. Determine the values of two distances d1 and d2.

Physics Extra sheet

Exercise 5 : Ultrasound of a dolphin

Two dolphins (D1) and (D2) move in the water on the same straight line but in opposite directions, with constant speeds respectively $\mathrm{V} 1=15 \mathrm{~m} / \mathrm{s}$ and $\mathrm{V} 2=20 \mathrm{~m} / \mathrm{s}$ as shown in the figure opposite.

At time $t=0$ s the distance between (D1) and (D2) is $d=10 m$, at time t the distance between them becomes $\mathrm{d} 1=6.5 \mathrm{~m}$ or (D1) starts emitting an ultrasonic signal and it detects this signal by reflection with (D2) after a duration Δt of the emission.
We give: the speed of sound in water is $1500 \mathrm{~m} / \mathrm{s}$.
1-Calculate t1.
2 - Determine the value of the duration $\Delta \mathrm{t}$.
3- Knowing that D1's response time (time that elapses between the dolphin's reception of a signal and his response to this signal) is 0.18 s , can it avoid the dolphin (D2)?

